Live Instructor Teaching
Certificate of Completion
Courseware: Print
Free 6 Month Online Retake
Hands-On Learning?: Yes
Software Lab Included?: Yes
Individuals and Groups
@ Your Location
Group Teams
@ Your Organization
Hack Your Cybersecurity Future: Master the CompTIA Security+ with This Power Course.
Tired of living in fear of data breaches? Are you dreaming of a career securing networks and fending off cyber threats? This CompTIA Security+ Prep Course is your weapon of choice!
Here's why you'll love it:
Dive into these essential modules:
Plus, you'll get:
Don't wait! Enroll now and unlock your cybersecurity potential!
P.S. This course is designed for both beginners and experienced IT professionals. Jump in wherever you are and transform into a confident, certified cybersecurity hero!
Register Early: Registration Deadline is 2 Weeks Prior to Class Start.
You should be familiar with the topics covered in:
IT Professionals:
Individuals interested in Cybersecurity:
Certstaffix Training public classes are taught by live instructors to you in the comfort of your home or work. Attend our live online, instructor-led classes from the convenience of your location and avoid travel.
Have more than 10 students needing this course? Contact Us for bulk pricing.
This course is taught by a live instructor and is available in two class formats:
Cyber security threats, attacks, and vulnerabilities refer to any type of malicious activity that attempts to steal, destroy, or gain unauthorized access to digital information within a computer system. Cyber security threats are usually classified by the type of attack used. These include phishing, malware, ransomware, distributed denial-of-service (DDoS), and identity theft.
Phishing is the most common type of cyber security attack, in which hackers use social engineering techniques to attempt to gain access to someone’s private information by impersonating a legitimate organization or website. Malware involves malicious code that secretly installs itself into a system and causes disruption or damage. Ransomware is a type of malware that encrypts a user’s data until they pay a ransom to the attacker, while DDoS attacks involve flooding a system or website with so many requests that it can no longer respond effectively. Identity theft is when a hacker steals an individual’s personal information and uses it without their knowledge or consent.
Given these potential threats, organizations must take security measures to prevent attackers from successfully infiltrating their networks. This includes installing robust firewalls, implementing antivirus software, and developing comprehensive cyber security policies and procedures. Additionally, organizations must ensure that their employees are properly trained on cyber security best practices to help minimize the risk of successful attacks. By taking steps like these, organizations can protect their digital assets from malicious actors.
Malicious code, also known as malware, is a type of malicious software or program that is designed to disrupt and damage the smooth functioning of computer systems. It is usually spread through email attachments, websites containing malicious links and downloads, or by exploiting security vulnerabilities on the system. Malicious code can cause a variety of problems such as data theft, system disruption, identity theft, or other forms of fraud. It is important to be aware of the risks associated with malicious code and take steps to protect your systems against it. These include keeping your operating system and applications up-to-date, installing firewalls and antivirus software, having strong passwords for user accounts, and avoiding suspicious emails or websites. Taking these precautions can help to reduce the risk of malicious code attacks and ensure that your systems remain secure.
Social engineering, and physical and password attacks are three different types of security threats. Social engineering involves manipulating people into giving out confidential information or performing tasks that can put an organization’s security at risk. Physical attacks involve attempting to gain unauthorized access to a facility or its assets by breaking in, stealing equipment, or tampering with sensitive devices. Password attacks involve trying to guess or crack passwords to gain access.
All three types of attacks can be equally damaging, so organizations must take steps to protect themselves. Some steps include implementing strong authentication measures such as two-factor authentication, limiting physical access to data centers or other sensitive areas, and regularly monitoring user accounts for suspicious activity. Organizations should also stay up to date with the latest security trends and technologies, as well as educate their employees about potential threats. By taking these steps, organizations can help prevent social engineering, and physical and password attacks from compromising their security.
Security assessment and testing is a form of security evaluation that involves the systematic examination of an organization's systems, networks, applications, and other computing resources. It is carried out to identify risks and vulnerabilities in any part of the IT infrastructure. These assessments help organizations protect their data, networks, and computers from external threats while ensuring compliance with industry standards and government regulations.
Assessment and testing can take many forms, including vulnerability scans, penetration tests, code reviews, threat simulations, and social engineering assessments. By monitoring an organization's IT resources with such tests, organizations can ensure that they remain secure and protect their assets from malicious actors. Furthermore, security assessment and testing can help identify weaknesses in existing security measures and help organizations make changes to mitigate those risks. Security assessment and testing is a critical parts of any organization's IT security strategy.
Secure coding is an approach to developing software that ensures the security of programs and applications. It involves writing code in such a way that it does not allow malicious actors to exploit vulnerabilities or gain access to sensitive data. Secure coding follows a set of guidelines and best practices for protecting data, including secure authentication mechanisms, input validation and sanitization, encryption, and secure data storage.
By following these guidelines, developers can create software that is less prone to attack and more resilient to malicious manipulation. Secure coding also helps to reduce the risk of security breaches and maintain an organization's reputation. Secure coding helps organizations develop reliable applications that keep their customers' information safe and protected from misuse or theft.
Cryptography is a method of protecting information and communications through the use of codes, and it is the foundation for digital security. The Public Key Infrastructure (PKI) is an additional layer of security that uses encryption algorithms to verify the identity of users, protect data integrity, and ensure secure communication between two parties. PKI also provides a way to store, manage, and share digital certificates securely using a distributed infrastructure.
PKI is often used in secure transactions such as banking, financial services, and e-commerce to ensure that information is properly protected. It also assures non-repudiation (i.e., the sender cannot deny having sent the message) and data integrity (i.e., the data is not tampered with during transit). Furthermore, PKI provides a reliable way to authenticate and verify user identities before allowing access to sensitive systems or services.
By using cryptography and the Public Key Infrastructure, organizations can ensure that only authorized parties have access to sensitive information or services, and data is protected from malicious actors. With these measures in place, businesses can confidently transact on the internet, and users can trust that their data is secure.
Identity and Access Management (IAM) is a set of policies, processes, and technologies designed to manage digital identities, their authentication, and access authorization across multiple systems, applications, and organizations. It allows for unified identity management that helps control user access and authenticate users using various methods such as passwords, tokens, or biometrics. IAM also provides a secure way to manage user lifecycle, by enabling the registration and de-registration of users and providing access control to the resources they need. This helps businesses maintain consistent security standards across all their digital assets while protecting customer data and complying with appropriate regulations.
By having IAM in place, companies can ensure that only approved personnel have access to the required resources and protect their data from unauthorized access. The implementation of an IAM solution can be beneficial for businesses in managing risk and compliance, ensuring secure digital service delivery, optimizing costs, improving ease-of-use for users, and enhancing overall security posture. With the growing complexity of digital environments, IAM has become an essential part of organizations looking to provide secure and reliable access to their resources.
Resilience and physical security are two important factors in ensuring a secure working environment. Resilience refers to the ability of an organization to effectively adapt to changes or disruptions in its operational environment. Physical security is the process of protecting people and assets from harm, theft, vandalism, disruption, sabotage, or other malicious activities. Both are necessary to keep data and systems secure and enable organizations to survive in the event of a breach.
Implementing resilience and physical security measures requires careful planning and ongoing monitoring. Organizations should begin by assessing their current environment and understanding the risks associated with it. This can include conducting vulnerability assessments, evaluating business continuity plans, identifying potential threats, and determining the best ways to mitigate them.
Organizations should also regularly review their security policies and systems, ensuring they are up-to-date with the latest technology and standards. This includes implementing firewalls, access control systems, monitoring tools, encryption technologies, authentication measures, and patching protocols. Organizations should invest in personnel training to ensure their staff is aware of the importance of physical security and how to report suspicious activity.
Resilience and physical security are essential components of any secure workplace. By taking the time to properly assess risks, implement protective measures, and train personnel, organizations can ensure they remain safe and secure in times of crisis.
Cloud and virtualization security is a set of processes, policies, and technologies implemented to ensure the safety of data stored and accessed in cloud or virtualized environments. It works to protect against threats such as unauthorized access and data theft. Cloud security involves protecting user identities, authentication measures, encryption technology, secure network protocols, system monitoring, auditing and logging, and more. It also requires regular reviews of security protocols, system updates, and user access privileges to ensure continued safety. Solutions such as firewalls and multi-factor authentication can help protect cloud or virtualized resources from malicious actors. Furthermore, data loss prevention (DLP) measures can help detect sensitive data that is stored in the cloud or virtualized environment, and prevent it from being compromised. By investing in cloud or virtualization security measures, organizations can ensure that their data is protected, and reduce the risk of potential attacks.
Endpoint security is a comprehensive approach to protecting the data and devices that are connected to computer networks. It focuses on monitoring, detecting, controlling, and preventing any malicious actions taken against an endpoint—such as a laptop or smartphone. Endpoint security helps protect endpoints from known and unknown threats, such as viruses, malware, ransomware attacks, and other cyber attacks.
Any organization needs to have an endpoint security solution in place, as it can prevent data theft, unauthorized access, and system damage. Furthermore, endpoint security solutions often include features such as user authentication, application control, encryption, network monitoring, and more. With a comprehensive endpoint security solution in place, organizations can ensure the safety of their data and infrastructure from malicious cyber attacks. Endpoint security is the best way to protect an organization’s most valuable assets: its data, networks, and devices. By monitoring, detecting, and preventing malicious actions taken against endpoints, organizations can keep their data safe and secure.
Network security is a broad term that describes the measures taken to protect the availability, integrity, and confidentiality of a network and its associated data. This involves taking steps to protect against malicious activities such as hacking, malware, phishing attacks, spoofing, or DoS (denial-of-service) attacks. Network security also includes technologies and processes used to protect against data theft or unauthorized access to sensitive information, as well as measures used to ensure the privacy of private data sent over public networks. Additionally, network security can include methods for protecting against viruses, worms, Trojans, and other malicious applications that might otherwise be able to infect a computer system. Any organization with an online presence needs to have a comprehensive network security strategy in place, as well as the right tools and resources to implement it. With the right measures in place, organizations can mitigate the risks associated with online threats and protect their networks and data from attack.
Wireless and mobile security is the protection of smartphones, tablets, laptops, and other wireless devices and the networks they connect to. It involves protecting data privacy and integrity, authenticating users, encrypting communications, and preventing malicious attacks on these devices. Wireless and mobile security also play an important role in maintaining compliance with industry regulations such as HIPAA and GDPR. As such, organizations must take steps to ensure that they have the proper wireless and mobile security measures in place. This can include implementing authentication methods such as passwords or biometrics, using encrypted Wi-Fi networks, establishing secure remote access for employees, and providing employee education about cyber threats and best practices for avoiding them. By taking the necessary steps to protect their wireless and mobile networks, organizations can help ensure that their data is secure and prevent malicious actors from gaining unauthorized access.
IT security incident response is the process of preparing for, managing, and responding to an information technology (IT) security incident. It requires planning, collaboration, and coordination between various departments within an organization to ensure the timely mitigation of risks associated with a cyber-attack or other IT-related incident.
An effective IT Security Incident Response Plan should include protocols for identifying, evaluating, containing, remediating, and reporting security incidents. It should include an investigation process to determine the source and extent of the incident, as well as a comprehensive recovery plan in case of data loss or system failure. By proactively implementing an IT Security Incident Response Plan, organizations can protect their critical assets and quickly recover from any cyber attack.
Digital forensics is a branch of forensic science that utilizes a variety of techniques and tools to investigate digital media to collect, identify, analyze, and present digital evidence. Digital forensics can be used in criminal cases as well as civil litigation or other types of investigations. Investigators use digital forensics to understand the cause of an incident, determine the sequence of events, and attribute responsibility to a particular party. It can also be used to recover deleted data or investigate suspicious activity on systems and networks.
Digital forensics is an invaluable tool for law enforcement and other organizations that need to uncover digital evidence to make informed decisions about a case. With the right training, digital forensics professionals can help organizations uncover evidence that would otherwise remain hidden. It is an integral part of many investigations and its importance will only continue to grow as digital devices become more pervasive in our lives. Digital forensics can help organizations quickly identify criminals, protect their intellectual property, recover lost or stolen data, and even detect insider threats.
IT security policies, standards, and compliance are essential for any organization's digital security. They provide a set of guidelines that organizations can use to protect their systems from unauthorized access and malicious attacks. By having well-defined policies, standards, and procedures in place, organizations can ensure they have an effective approach to safeguarding their network infrastructure, applications, and data. Compliance with these standards is also essential to ensure organizations are compliant with any applicable regulations and laws. IT security policies, standards, and compliance can help protect an organization from data breaches, malicious attacks, financial losses, and reputational damage. They can also provide organizations with the tools they need to quickly detect and respond to any security incidents.
IT risk management and privacy involves assessing the potential risks that may arise when processing, storing or transmitting data digitally. This can include safeguarding sensitive information such as personal details or confidential company documents, preventing accidental loss or destruction of data, protecting against malicious attacks from hackers, and ensuring compliance with relevant regulations like GDPR. By understanding and mitigating potential risks, companies can protect their data, reputation, and bottom line. With the right processes in place, IT risk management and privacy allows organizations to conduct business confidently in the digital age.
To ensure comprehensive protection of data and networks, IT teams should regularly review potential risks posed by new technologies or changes in regulations, while also taking proactive measures to anticipate and prevent breaches. Risk management processes should also involve regular monitoring, incident response plans, and security testing to identify any weaknesses in the system before they can be exploited by malicious actors. By implementing these measures, organizations can reduce the likelihood of a data breach or other security incident occurring that could damage their reputation and bottom line.
Public instructor-led CompTIA Security+ course prices start at $2,195 per student. Group training discounts are available.
Self-Paced CompTIA Security+ eLearning courses cost $600 at the starting point per student. Group purchase discounts are available.
A: If you are wondering what CompTIA Security+ skills are important to learn to prepare for certification, we've written a CompTIA Security+ Skills and Learning Guide that maps out CompTIA Security+ skills that are key to master and which of our courses teaches each skill.
Read Our CompTIA Security+ Skills and Learning Guide
With Certstaffix Training, you have three different ways to gain invaluable knowledge from our CompTIA Security+ courses. Our methods include: 1) Live CompTIA Security+ online training, which provides real-time interactive sessions; 2) A self-paced Security+ course, for those who prefer to learn at their own speed, and 3) CompTIA Security courses which are offered on-site for corporate groups.
If you are looking for flexibility, our live or self-aced CompTIA Security+ online course is available, giving you the freedom to learn from anywhere. For corporate groups, we offer face-to-face CompTIA Security+ classes near me at your office. Naming variants such as Securityplus training and Sec Plus training are also available, designed to equip you with the necessary certification skills. All our Security+ courses are designed to prepare learners to sit the CompTIA Security+ certification exam, whether you're taking the CompTIA Security+ class in person (corporate groups) or online.
Embrace the opportunity to enhance your IT security skills with our multiple types of Security+ classes today!
A: CompTIA Security+ covers the fundamentals of cybersecurity involving networks and devices. It can also help with the implementation of security principles throughout organizations. Generally, CompTIA Security+ certification holders are expected to identify, manage, and address cybersecurity threats and vulnerabilities. Individuals who earn a CompTIA Security+ certification often obtain entry-level cybersecurity jobs. These positions can include the titles of security specialist, security engineer, security consultant, junior penetration tester, cybersecurity specialist, systems administrator, security administrator, or network administrator. The best way for a novice to prepare for a certification exam is to sign up for hands-on, instructor-led classes.
More Information on CompTIA Security+ and Jobs With CompTIA Security+ Certification
A: CompTIA certifications are some of the most valuable certifications in the information technology (IT) industry because they are well-known and widely respected and can immediately convey technological proficiency to employers. Earning an entry-level CompTIA certification, such as CompTIA A+, can set employees on track to learning other skills and obtaining specialized credentials in areas like infrastructure, cybersecurity, and data analytics. A basic CompTIA A+ certification can open doors to several different professional positions. CompTIA certification-holders also typically enjoy pay increases after they obtain their credentials.
A: Yes, CompTIA Security+ training is definitely worth it! The course will teach you the necessary skills and knowledge to help you pass the CompTIA Security+ exam and become certified. The certification will give you a huge leg up in the job market, and employers will be impressed by your credentials. CompTIA Security+ is one of the most popular certifications out there, so it's definitely worth getting certified. Good luck!
Browse our available CompTIA Security+ training options
A: The CompTIA Security+ certification is a well-recognized and respected credential in the IT industry. It validates an individual's knowledge and skills in relation to cybersecurity. To obtain this certification, candidates must pass a rigorous exam that covers a wide range of topics.
So, how long does it take to get Security+ certified? The answer depends on several factors, including your prior experience and knowledge, study habits, and the amount of time you are able to dedicate to preparation.
If you have little to no experience in the field of cybersecurity, it will likely take longer to prepare for the exam than someone who is already working in the field. That being said, even those with experience can benefit from taking a CompTIA Security+ training course. These courses provide in-depth coverage of all the topics covered on the exam and can help you hone your test-taking skills.
On average, most people who take a CompTIA Security+ training course report that they spend between two and four months studying for the exam. However, this is just an estimate - your mileage may vary! The important thing is to make sure you give yourself enough time to adequately prepare. Rushing through your studies is not recommended and is more likely to lead to a unsuccessful attempt at the exam.
So, there you have it! While there is no definite answer to how long it takes to get Security+ certified, following a comprehensive study plan and dedicating adequate time to preparation are key to success. Enrolling in a CompTIA Security+ training course is also a great way to increase your chances of passing the exam on your first attempt.
A: CompTIA Security+ is a great cyber security certification for beginners. The coursework is designed to give you the skills and knowledge you need to work in the field of information security. CompTIA Security+ is an internationally recognized certification that will make you more marketable in the job market. The CompTIA Security+ exam is also a good way to show employers that you have the ability to understand and apply concepts of security.
Certstaffix Training provides CompTIA Security+ classes near me or online, depending on the number of students involved. We offer online courses for individual learners, as well as in person classes at your office for corporate groups. Our trainers are highly experienced professionals with the expertise necessary to help you gain a thorough understanding of CompTIA Security+ concepts and tools. With our courses available online for individuals or in person for corporate groups, it's easy to develop your CompTIA Security+ skills. Start learning today and see how Certstaffix Training can help you reach your goals.